Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
projects:quantum:category-qc [2025/04/10 19:44] – [Early Algebraic Approaches to Quantum Mechanics] kymkiprojects:quantum:category-qc [2025/04/16 15:41] (current) kymki
Line 1: Line 1:
-====== Categorical Quantum Computing: A Historical and Theoretical Overview ======+<html> 
 +<head> 
 +  <meta charset="UTF-8"> 
 +  <meta name="viewport" content="width=device-width, initial-scale=1.0"> 
 +  <title>Ramble Meter</title> 
 +  <style> 
 +    /* Container for the entire Ramble Meter */ 
 +    .ramble-meter-container { 
 +      display: flex; 
 +      align-items: center; 
 +      justify-content: center; 
 +      margin: 20px 0; 
 +    } 
 + 
 +    /* Ramble Meter */ 
 +    .ramble-meter { 
 +      position: relative; 
 +      width: 200px; /* Scaled down */ 
 +      height: 40px; /* Scaled down */ 
 +      background: linear-gradient(to right, green, yellow, orange, red); 
 +      border-radius: 20px; 
 +      overflow: hidden; 
 +      box-shadow: 0 2px 8px rgba(0, 0, 0, 0.3); 
 +    } 
 + 
 +    /* Needle */ 
 +    .needle { 
 +      position: absolute; 
 +      top: 5px; /* Adjust for centering */ 
 +      left: 50%; /* Default position */ 
 +      width: 4px; /* Visible width */ 
 +      height: 30px; 
 +      background: black; 
 +      border-radius: 2px; 
 +      z-index: 2; 
 +      box-shadow: 0 0 10px rgba(0, 0, 0, 0.5); /* Glow effect */ 
 +    } 
 + 
 +    /* Label in the middle of the meter */ 
 +    .meter-label { 
 +      position: absolute; 
 +      top: 50%; 
 +      left: 50%; 
 +      transform: translate(-50%, -50%); 
 +      font-family: Arial, sans-serif; 
 +      font-size: 12px; /* Adjusted for smaller size */ 
 +      font-weight: bold; 
 +      color: #fff; 
 +      text-shadow: 0 2px 4px rgba(0, 0, 0, 0.5); 
 +      z-index: 3; 
 +    } 
 + 
 +    /* Tooltip styling */ 
 +    .tooltip { 
 +      visibility: hidden; 
 +      width: 250px; 
 +      background-color: #222; 
 +      color: #fff; 
 +      text-align: center; 
 +      padding: 10px; 
 +      border-radius: 5px; 
 +      position: absolute; 
 +      top: 50%; /* Vertically aligned */ 
 +      left: 110%; /* Position to the right of the meter */ 
 +      transform: translateY(-50%); 
 +      font-size: 12px; 
 +      z-index: 10; 
 +      box-shadow: 0 2px 5px rgba(0, 0, 0, 0.3); 
 +    } 
 + 
 +    /* Show tooltip on hover */ 
 +    .ramble-meter:hover + .tooltip { 
 +      visibility: visible; 
 +    } 
 + 
 +    /* Wrapper for positioning the tooltip and meter */ 
 +    .ramble-wrapper { 
 +      position: relative; 
 +      display: flex; 
 +      align-items: center; 
 +    } 
 +  </style> 
 +  <script> 
 +    document.addEventListener("DOMContentLoaded", () => { 
 +      const needle = document.querySelector(".needle"); 
 +      const rambleMeter = document.querySelector(".ramble-meter"); 
 +      const level = rambleMeter.getAttribute("data-level"); // Read the level from the attribute (0-100) 
 +      needle.style.left = `${Math.min(Math.max(level, 0), 100)}%`; // Clamp between 0 and 100 
 +    }); 
 +  </script> 
 +</head> 
 +<body> 
 +  <!-- Ramble Meter --> 
 +  <div class="ramble-meter-container"> 
 +    <div class="ramble-wrapper"> 
 +      <div class="ramble-meter" data-level="80"> <!-- Adjust level here (0-100) --> 
 +        <div class="meter-label">Ramble Meter</div> 
 +        <div class="needle"></div> 
 +      </div> 
 +      <div class="tooltip">Some major reconstruction of the text needed to align with the foundational papers. At this stage it is a frame. Avoid.</div> 
 +    </div> 
 +  </div> 
 +</body> 
 +</html> 
 + 
 +====== Categorical Quantum Computing Series: A Historical and Theoretical Overview ======
  
 ===== Early Algebraic Approaches to Quantum Mechanics ===== ===== Early Algebraic Approaches to Quantum Mechanics =====
-BLA[(Knuth68)] 
  
 Quantum theory was originally formulated in algebraic terms using Hilbert spaces and linear operators. In the **Dirac–von Neumann** framework, a quantum system’s state is a vector (or ray) in a complex Hilbert space, observable quantities correspond to self-adjoint operators, and time evolution is given by unitary transformations on the state space ([[https://en.wikipedia.org/wiki/Mathematical_formulation_of_quantum_mechanics#:~:text=transformations,states%2C%20and%20physical%20symmetries%20are|Mathematical formulation of quantum mechanics - Wikipedia]]). The combination of two independent systems is described by the tensor product of their Hilbert spaces ([[https://en.wikipedia.org/wiki/Mathematical_formulation_of_quantum_mechanics#:~:text=match%20at%20L572%20,systems%20are%20the%20individual%20particles|Mathematical formulation of quantum mechanics - Wikipedia]]). This operator-theoretic formalism, developed in the 1930s, provided a rigorous mathematical foundation for quantum mechanics and remains standard. However, it inherently encodes composition (e.g. forming joint systems via tensor products) within the Hilbert space formalism itself, lacking a high-level language for **composing processes**. Early attempts to capture the logical structure of quantum theory in abstract terms include **quantum logic** – notably the work of Birkhoff and von Neumann (1936), who identified the lattice of projective subspaces of a Hilbert space with a logic of quantum propositions ([[https://en.wikipedia.org/wiki/Quantum_logic#:~:text=In%20his%20classic%201932%20treatise,3|Quantum logic - Wikipedia]]). Subsequent axiomatizations, such as Mackey’s 1963 postulates, sought to derive quantum mechanics from order-theoretic or probabilistic axioms ([[https://en.wikipedia.org/wiki/Quantum_logic#:~:text=logic%20by%20von%C2%A0Neumann%20and%20Birkhoff,3|Quantum logic - Wikipedia]]). These approaches were algebraic and logical, but not yet **categorical**. They treated quantum states and observables as static mathematical objects rather than **processes**, and composition was implicit. By the late 20th century, category theory had matured as a framework for composition in mathematics, setting the stage for a new semantic approach. Quantum theory was originally formulated in algebraic terms using Hilbert spaces and linear operators. In the **Dirac–von Neumann** framework, a quantum system’s state is a vector (or ray) in a complex Hilbert space, observable quantities correspond to self-adjoint operators, and time evolution is given by unitary transformations on the state space ([[https://en.wikipedia.org/wiki/Mathematical_formulation_of_quantum_mechanics#:~:text=transformations,states%2C%20and%20physical%20symmetries%20are|Mathematical formulation of quantum mechanics - Wikipedia]]). The combination of two independent systems is described by the tensor product of their Hilbert spaces ([[https://en.wikipedia.org/wiki/Mathematical_formulation_of_quantum_mechanics#:~:text=match%20at%20L572%20,systems%20are%20the%20individual%20particles|Mathematical formulation of quantum mechanics - Wikipedia]]). This operator-theoretic formalism, developed in the 1930s, provided a rigorous mathematical foundation for quantum mechanics and remains standard. However, it inherently encodes composition (e.g. forming joint systems via tensor products) within the Hilbert space formalism itself, lacking a high-level language for **composing processes**. Early attempts to capture the logical structure of quantum theory in abstract terms include **quantum logic** – notably the work of Birkhoff and von Neumann (1936), who identified the lattice of projective subspaces of a Hilbert space with a logic of quantum propositions ([[https://en.wikipedia.org/wiki/Quantum_logic#:~:text=In%20his%20classic%201932%20treatise,3|Quantum logic - Wikipedia]]). Subsequent axiomatizations, such as Mackey’s 1963 postulates, sought to derive quantum mechanics from order-theoretic or probabilistic axioms ([[https://en.wikipedia.org/wiki/Quantum_logic#:~:text=logic%20by%20von%C2%A0Neumann%20and%20Birkhoff,3|Quantum logic - Wikipedia]]). These approaches were algebraic and logical, but not yet **categorical**. They treated quantum states and observables as static mathematical objects rather than **processes**, and composition was implicit. By the late 20th century, category theory had matured as a framework for composition in mathematics, setting the stage for a new semantic approach.